Ci vykresluje, to neviem...Původně odeslal Warlord
Ale OMFG, ved to mas uplne obycajnu jednoduchu substituciu...
integral ( x/[(1-x^2)^(1/2)] ) dx
~
substitucia 1-x^2 = t
-2x dx = dt
dx = dt/(-2x)
~
integral (x/[t^(1/2)]) dt/(-2x) = -1/2 * integral (1/t^(1/2)) dt = -1/2 * integral (t^[-(1/2)]) dt = -1/2 * t^(1/2)/(1/2) = -1/2 * [(1-x^2)^(1/2)] / (1/2) = - (1-x^2)^(1/2)![]()